Efficient Relaying Strategy Selection and Signal Combining using Error Estimation Codes

Mohammad Taha Khan, Talha Anwar, Muhammad Kumail Haider[†] and Momin Uppal

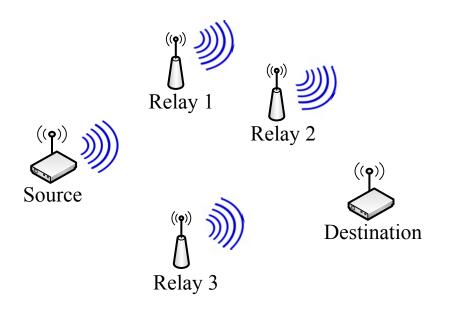
Department of Electrical Engineering, LUMS School of Science and Engineering, Pakistan [†]Department of Electrical and Computer Engineering, Rice University, Houston, USA

Summary

- Cooperative framework for a multi-relay network
- Error Estimation Codes for BER Estimation
 - Relaying Strategy Selection (AF or DF)
 - Combining algorithm at the destination
- Main Features
 - Explicit estimation of SNR not required
 - Source/Destination oblivious to the selected relaying strategy
- Experimental evaluation using software-defined radios

Outline

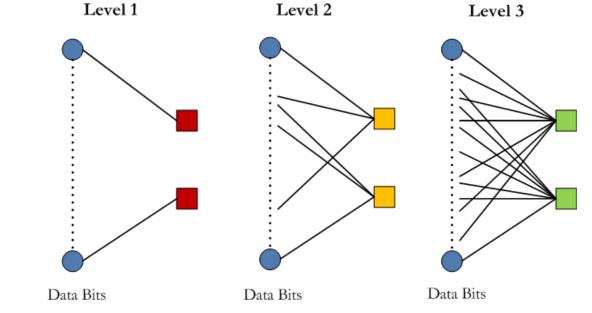
• System Model


• Overview of EEC

• Proposed cooperative framework

• Results

System Model



- Multiple half-duplex relays
- No two nodes can transmit simultaneously
- No CSI at the transmitter
- QPSK modulated transmissions

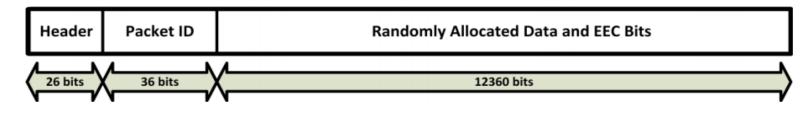
Overview of EEC: Encoding

- *n* data bits are divided into *l* levels
- Parity bit at level i: binary addition of 2^{i} -1 random data bits
- Same number of parity bits at each level

• Parity bits uniformly spread in the packet

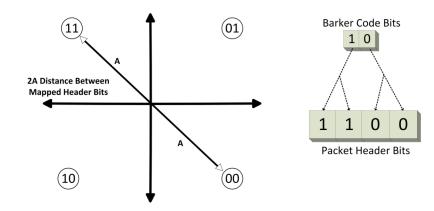
Binbin Chen et al "Efficient Error Estimating Coding: Feasibility and Applications," Proceedings of ACM SIGCOMM, Sept. 2010.

Overview of EEC: Decoding


- Same random seed at the decoder and encoder
- Compute the fraction of failed parity checks at each level
- BER estimated from these computations

• Provable guarantees

Binbin Chen et al "Efficient Error Estimating Coding: Feasibility and Applications," Proceedings of ACM SIGCOMM, Sept. 2010.


Proposed Cooperative Framework

Packet Format

- Data : 12000 bits
- EEC Parity: 360 bits
- Packet ID : 36 bits
- Baseband Modulation: QPSK

• Header : 26-bit repeated Barker Sequence

Proposed Cooperative Framework

Relaying Strategy

- Locate Headers/Barker Sequences
- Form a BER estimate using detected EEC bits
- If BER < Threshold^{*}, DF cooperation
 - Send packet with detected data bits
- Else, AF cooperation
 - Header mapped to QPSK
 - Forward analog samples of Data + EEC bits

* Threshold is computed empirically

Proposed Cooperative Framework

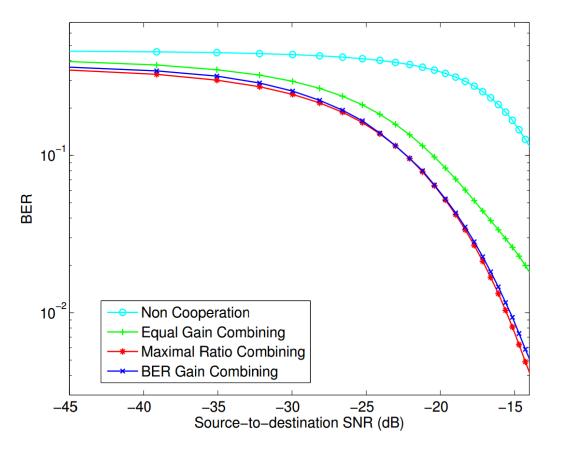
Decoding Strategy

- Locate Headers/Barker Sequences
 - Multiple copies of the same packet
- Form BER estimate of each copy using EEC bits
- Combine copies according to the rule

$$Y = \frac{(P_{sd})^{-1}Y_{sd} + \sum_{i=1}^{K} (P_{rd}^{i})^{-1}Y_{rd}^{i}}{(P_{sd})^{-1} + \sum_{i=1}^{K} (P_{rd}^{i})^{-1}}$$

• Form bit estimates on the combined copy

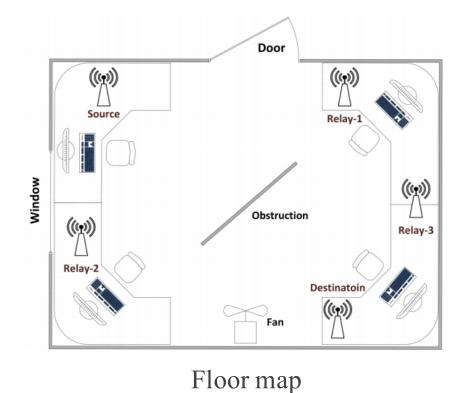
Main Features



- Benefits over Maximum Ratio Combining
 - No explicit knowledge of channel conditions required
 - Able to predict SNR over the entire channel length in contrast to pilot based estimates
 - Independent of AF/DF strategy adopted by the relays

- Benefits over EGC
 - Much better performance
- Performance gains of MRC with the simplicity comparable to EGC

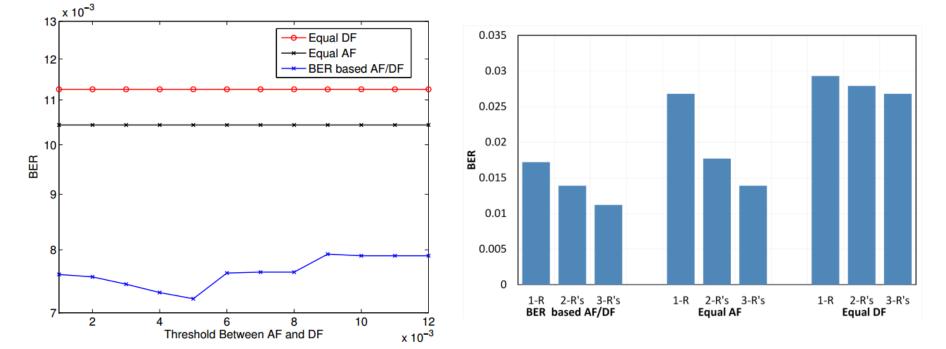
Results (Simulations)



- AWGN channels
- $S \rightarrow R$ and $R \rightarrow D$ links 18 dB better

Experimental evaluations

- USRP-1 devices connected to Windows-based PCs
- Baseband Processing in Matlab-Simulink



Experimental Results

Single Relay

Multiple Relays

Thank you

Questions/Comments?