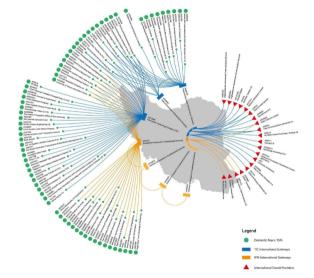
Blind In/On-Path Attacks and Applications to VPNs

William J. Tolley[†]‡, Beau Kujath[†]‡, Mohammad Taha Khan[§], Narseo Vallina-Rodriguez¶£, and Jedidiah R. Crandall[†]‡

Arizona State University†, Breakpointing Bad‡, Washington & Lee University§, IMDEA Networks Institute¶, International Computer Science Institute£



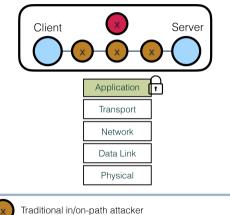
Do VPNs (and related technologies such as Psiphon, Orbot, *etc.*) protect the connections tunneled through them from inference, interference, and hijacking?

- Public Wifi
- State-controlled cell tower
- In-path state-controlled ISP

In-path state-controlled ISP

Attacker with *.facebook.com SSL/TLS cert: 2009 vs. today

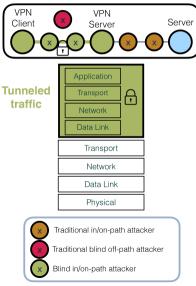
[protected] from Tehran, IRAN, CC BY-SA 2.0 https://creativecommons.org/licenses/by-sa/2.0, via Wikimedia Commons


(https://commons.wikimedia.org/wiki/File:Iran_election_(2).jpg)

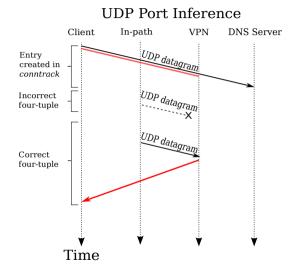
What if the Facebook users in Iran in 2009 had all used a VPN?

E.g., the latest version of WireGuard from May, 2021

Need for new terminology



Traditional blind off-path attacker


Blind in/on-path attacker (Router or network adjacent)

New terminology: Blind In/On-Path Attacker

B. VPN-Tunneled Connection

Server-side attack on DNS over UDP

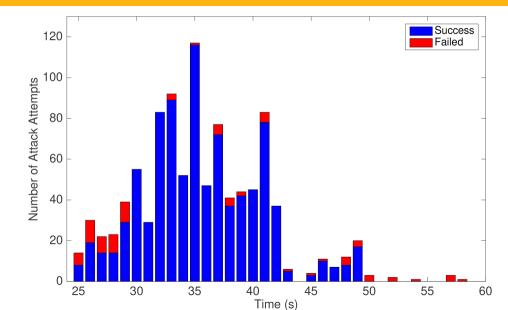
Р	UDP			DNS		
		dst port			TXID	

- Off-path attacker • $2^{16} \times 2^{16} = 2^{32}$, 🙂
- In/On-path attacker

•
$$2^{16} + 2^{16} = 2^1$$

• 32,768 \times faster than 2³² $\ensuremath{\mathfrak{S}}$

Man-in-the-middle despite TLS and VPN


Tested for different DNS timeouts:

- 15 seconds (e.g., Android 11): 75.3% succuessful
- 10 seconds (*e.g.*, Ubuntu 20.04): 48.1% succuessful
- 5 seconds (e.g., Firefox 80.0.1): 11.6% succuessful

- We also did *client-side attacks*
 - Can infer that a client is connected to a VPN, infer the existence of TCP connections in the VPN tunnel, and then reset or even hijack those connections
- The DNS over UDP attack you just saw is server-side
 - Interface and all packet fields are identical for attack vs. legitimate traffic
 - It's also possible to do any of our TCP attacks above server-side

- Ethical Disclosure
 - CVE-2019-9461
 - CVE-2019-14899
 - Correspondence with Linux kernel developers
- Mitigation
 - Client-side mitigated by many vendors by distinguishing the interface
 - Server-side totally unmitigated by any vendor despite ethical disclosure

Client-side results

13 / 16

- Have client-side attacks actually been mitigated by vendors?
- How practical are server-side attacks for a real ISP?
- Can we detect and prevent server-side attacks?
- What about things like Shadowsocks?
- What about padding, etc.?
 - *e.g.*, obsfproxy
- What else can go wrong when you stack layers of abstraction on top of each other and encrypt them?

- You can encrypt your packets, but you can't hide their existence, timing, or size
- Blind in/on-path attackers should be considered when designing any protocols that might be tunneled (*e.g.*, in a VPN)

 This material is based upon work supported by the U.S. National Science Foundation under Grant nos. 1518523, 1518878, 1801613, and 2007741, as well as the Open Technology Fund and the Ministry of Science and Innovation (Spain) (PID2019-111429RB-C22).